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J.  Phys.: Condens. Matter 2 (1990) 5409-5431. Printed in the UK 

Phase transitions and soft modes in ferroelectric 
superlattices 

D Schwenk, F Fishman and F Schwabl 
Institut fur Theoretische Physik, Physik-Department der Technischen Universitat 
Munchen, D-8046 Garching, Federal Republic of Germany 

Received 22 September 1989 

Abstract. A theory of periodic ferroelectric multilayers is presented. The multilayer system 
consists of two alternating ferroelectrics with different transition temperatures. The system is 
described by a Ginzburg-Landau functional withspace-dependent coefficients. In particular, 
we consider the case of a ferroelectric phase transition of first order. Expressions for static 
properties such as transition temperature, supercooling temperature and polarisation profile 
are derived. Immediately below the transition temperature there are unpolarised domains 
within the stronger ferroelectric layers. Their existence is due to the possible phase coexist- 
ence of the ordered and disordered phases in the corresponding bulk material. In order to 
describe the soft-mode dynamics we use phenomenological equations of motion and study 
the spectrum of transverse optical modes. The lowest bands are almost dispersion-free and 
the corresponding modes are confined to those layers which have the lower bulk soft-mode 
frequency. Because the bulk soft modes of the two layers soften at different temperatures 
the localisation of the modes in one or the other layer depends upon the temperature. This 
temperature dependence of the mode form can be seen in the lineshape of the polarisation 
correlation function if the soft-mode damping of the two layers is different. Furthermore, 
interface modes are shown to exist. Their energy lies below the continuum, confined by 
the two bulk soft-mode frequencies. These modes result from the special form of the 
inhomogeneous polarisation profile in a superlattice in contrast to the Fuchs-Kliever inter- 
face modes, which have their origin in the long-range dipolar interaction. The number of 
these bound states depends on the temperature. 

1. Introduction 

Nowadays the fabrication of artificial heterostructures down to atomic dimensions is 
possible. A great number of different types of layer structures, which differ by the nature 
of their constituents, has been realised. Much interest has been focused on combinations 
of semiconducting, metallic, magnetic and superconducting materials. In this article we 
will study ferroelectric heterostructures. Experiments on these structures are still in 
their infancy. We are aware only of superlattices made of the ferroelectric IV-VI 
compounds GeTe, SnTe and PbTe [l-31. However, mainly the electronic properties of 
these semiconducting materials were studied. 

Ferroelectric multilayers are of interest because possible device applications are 
conceivable in the classical fields of ferroelectric applications such as pyroelectric detec- 
tion, memory systems or electro-optic modulators. But there is also fundamental interest 
in the study of these artificial structures, because their properties can differ drastically 
from the bulk ones. 

0953-8984/90/245409 + 23 $03.50 @ 1990 IOP Publishing Ltd 5409 



5410 D Schwenk et a1 

Figure 1. Geometry of the periodic layer struc- 
ture. Thicknesses of layers 1 and 2 are D ,  and D2. 

We present a continuum theory of the statics and dynamics of ferroelectric super- 
lattices starting from an inhomogeneous Ginzburg-Landau (GL) energy functional. The 
advantage of the GL theory is that a variety of physical properties are described without 
referring in detail to all the degrees of freedom of the system. The mathematical 
simplicity results from Landau’s order-parameter concept. The order parameter of the 
ferroelectric is the polarisation density. The GL theory is not specific to particular 
materials and can be applied equally well to other multilayer structures undergoing a 
phase transition, e.g. ferromagnets. 

We will study heterostructures undergoing a phase transition of first order, while 
transitions of second order have been treated in [4]. We address the following questions: 
(i) what are the phase transition and the supercooling temperatures of the structure and 
(ii) what is the polarisation profile? We also incorporate interface effects, which may 
arise due to structural and electronic mismatch at the interfaces. We will characterise 
these effects by a phenomenological interface-energy term in the GL functional. 

A major part of this work is devoted to the soft optical lattice modes in these 
structures, which are closely connected via the Lyddane-Sachs-Teller relation to the 
statics of the ferroelectric phase transition. The dynamic part of our theory is based on 
a phenomenological equation of motion, which was introduced by Ginzburg [5]. In the 
study of the dynamic properties the following questions are of special interest: (i) what 
is the detailed ‘miniband’ structure of the superlattice soft-mode spectrum and are the 
corresponding modes localised or extended, and (ii) how does the long-range dipolar 
interaction influence the spectrum? 

We are also interested in the lineshape of the dynamic correlation function, which 
may be probed in Raman or neutron scattering experiments. 

The outline of this paper is as follows. In section 2, we describe the model and the 
GL energy functional. In section 3, the polarisation profile and the transition temperature 
will be derived from the GL equation. In section 4, we consider the dynamics of the 
system, and in section 5 ,  we analyse the dynamic correlation functions. In section 6, the 
results are summarised. 

2. Themodel 

We consider a composite material made of two periodically arranged ferroelectric layers, 
as shown in figure 1. The interfaces between the layers define the y z  planes. The widths 
of the layers are D 1  and D2 and hence the period of the heterostructure is D = D, + D 2 .  
The study of the static and dynamic properties of this composite material will be based 
on the Ginzburg-Landau (GL) theory and hence we start with a discussion of the 
appropriate GL functional. We consider only proper ferroelectrics, where the local 
polarisation P ( x )  can be taken as the order parameter. We also assume that both 
ferroelectrics undergo a first-order phase transition and have cubic symmetry in the 
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disordered phase. The interfaces correspond to (100) planes. Examples of such ferro- 
electrics are BaTiO, and PbTi03, whose material parameters will be used later in the 
numerical calculations (cf appendix 1). However, we would like to emphasise that our 
theory is material-independent and can be applied to other ferroelectric materials as 
well. Of course, if the constituents have a different symmetry, the GL functional should 
be modified accordingly. 

In the absence of any external electric field the GL functional may be expressed in 
terms of the local polarisation P and the strain ei [6]: 

4 6 

G ( T , X j ; P , e i ) =  i = l  x G i - ~ ( t E m . P + x X i e j ) d 3 x .  i =  1 

Here we have used the Voigt notation for the components of the strain and stress tensor, 
i.e. e l  = e,,, . . . , e4 = e,, + e,,,, . . . , X1 = X,,, . . . and X4 = Xxy, . . . . In equation (2.1) 
Em denotes the depolarisation field. The field obeys the quasi-static Maxwell equations 

V X E m = O  

V(E + 4nP,,,) = 0 

where 

E ,  - 1 
4JG 

P,,, = P + -Em 

and E,(x) is the dielectric permeability. 
The potential terms G1, . . . , G4 are defined as follows. The first term 

G,  = 1 ($up2 + abll x P4 + ib12(P:P$ + P$PI  + P:P:)  + tb l l l  Pp 
I i 

+ b123P2P:Pi + Ibll2[P:(P; + P:) + P;(P: + P:) 

+ P:(P; + P ; ) ]  + tc1 (VP;)2 + iC*(VP)2 

(2.2a) 

(2.26) 

contains the polarisation terms commonly used in the GL expansion. We keep all 
terms necessary to describe the first-order phase transition in ferroelectrics with cubic 
symmetry. The second 

G, = J [+cll(e: + e: + e:) + d ~ ~ ~ ( e 2 4  + e: + e t )  + c12(ele2 + e1e3 + e3e2)] d3x 

describes the elastic energy of the body. The third 

(2.3b) 

(2.3c) 
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includes the electrostrictive terms describing coupling between polarisation and strain 
tensor. Finally, 

G 4  = j { f l l ( e l a x P x  + e 2 a y P y  + e 3 a 2 P 2 )  + f 1 2 [ e , ( a y P y  + ' Z P 2 >  

+ e* (axPx  + a2p2> + e 3 ( d y P y  + axPx)l 

+ f 4 4 [ e 2 ( a y P 2  + + e3(axPz + a 2 P x >  

+ e l ( a p x  + d x ~ , ) 1 ~ d 3 X  (2.3d) 

are the flexoelectric potential contributions, which we also consider for the sake of 
completeness. These terms, which are proportional to fll,  f i2  and f44 and which couple 
the derivatives of the polarisation to the strain tensor, are of no importance in the 
description of static properties of bulk ferroelectrics and are usually omitted. On the 
other hand, in the heterostructures, where the static polarisation is inhomogeneous, it 
is known that these terms lead to new effects, such as the appearance of a quadrupole 
moment under shear stress [7]. 

Near to the interfaces, the properties of the two materials can differ from those in 
the bulk. Two important reasons for this can be mismatch of the lattice constants and 
charge transfer. In order to describe these effects, one can introduce the surface GL 
functional Gs, which in its simplest form reads 

Gs = Gs,, = 1 S ( i D ,  - / x  - nDI)[ iJP;  + i l ( P ;  + PI) ]  d3x. (2.4) 
n n 

We assume that there are no symmetry-breaking fields at the interfaces and hence do 
not include terms such as EgUrfPi. If the ferroelectrics contain free carriers, a depletion 
zone and an additional field Edepl will appear near to the interfaces [8]. However, for low 
carrier concentrations this field is small compared with the characteristic intrinsic field 
Echar, with Echar - UP,, since the static susceptibility equals a-', and can be neglected. 

We want to emphasise that all coefficients in the GL functional are defined through 
the whole sample and are continuous functions of x. Far from the interfaces these 
parameters reach their bulk values a,, . . . with a = 1,2 .  We denote the region where 
the GL coefficients deviate from their bulk values by A .  If this transition region A is small 
compared with the correlation length 5,  cf equation (3.8b), of the order parameter, one 
can approximate these coefficients by the discontinuous 'step form' [4] 

a(x> = 2 u ,o{~D,  - I X  - [n + &(a - I ) ] D ~ >  (2.5) 
n = - x n = 1 , 2  , 

and similarly for all other GL coefficients. Although this approximation is not essential 
for our theory, it simplifies the analytical and numerical calculations and will be used 
below. 

As usual in the GL theory we attribute the temperature dependence to a,( T )  in the 
form 

a,(T) = ab(T - T,) a =  1,2.  ( 2 . 6 ~ )  

For a second-order transition T,  is the transition temperature in the GL approximation, 
and for a first-order transition it describes the supercooling temperature. The study of 
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phase transitions in BaTi03 shows that the experimental data can be fitted well if one 
assumes that the coefficient bll also depends linearly on the temperature, namely 

bl1 = b ; l ( T -  T )  (2.6b) 

with T = 262 K [9]. The GL functional (2.1) can be used to describe static as well as 
dynamic properties of such inhomogeneous ferroelectrics. 

3. Transition temperature and polarisation 

3.1. Effective Ginzburg-Landau potential 
For given temperature T and stress X i ,  the equilibrium values Po and are obtained 
by minimising the free energy (2.1) with respect to P and e,. The minimisation with 
respect to e, requires 

SG(T, X i ; P o ,  ei,o)/6ei = 0. (3.1) 
Equation (3.1) can be solved for e,, namely e, = ei(T, X i ;  P ) .  Substituting this solution 
into (2.1) we obtain the effective static GL functional [lo] 

4 

G X ( T , X , ; P )  = 2 GF + G s  - IiE"'  - P d 3 x .  (3.2) 
i =  1 

Here 

GF = (+AP2 + aBll 2 P f  + 4B12(P;P$ + P$P: + P t P ; )  
i 

+ QBlll  2 Pp + B l z 3 P ; P $ P :  + BBl12[P;(P; + P:) 
I 

+ P;(P: + P;) + P:(P; + P$)]  + K12 (VPi)Z + iCZ(VP)Z 
i 

- C3[@xPx) (a ,Py )  + ( a z P z ) ( a y P y )  + ( a x w 3 2 P 2 ) 1 )  d3X (3.3a) 

describes the potential contribution from the polarisation; 

GF = [-+sl1(X: + X :  + X i )  - + X :  + X i )  

- ~12(X1 X2 + X i  X3 + X3 XZ)]  d3x 

contains the stress terms; 

(3.36) 
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+ F 4 4 [ X 5 ( d y P r  + + X 6 ( d x P 2  + 

+ X4@,P, + ~,P,)I> d3X 

couples the stress to the derivatives of the polarisation. 

in terms of the original coefficients a ,  b l l ,  . . . in appendix 2. 

(3 .3d)  

The GL coefficients A ,  Bll, . . . , which appear in this effective functional, are given 

3.2. Ginzburg-Landau equation 

It is well known [9] that the spontaneous polarisation in BaTi03 and PbTi03 is oriented 
along either a (OOl), (01 1) or (1 11) axis depending upon the temperature range. We 
will only consider temperatures above room temperature, where the easy axes of both 
BaTi03 and PbTi03 are along the (001) direction. Hence we can assume that in the 
multilayer the transition occurs into the (001) phase. 

In the following we consider the composite material in the form of a slab with 
dimensions L,, L ,  + L,. Keeping in mind that Po depends only on x ,  we can easily see 
that the solution of the Maxwell equations (2.2) in this geometry is 

which obviously satisfies the electromagnetic boundary conditions. Therefore the term 
-Po * E r  in the GL functional is minimal (as well as the functional itself) for Po,, = 0 and 
we can take Po(x) to be oriented along the z axis, namely 

Po(x) = P,(x) ( O , O ,  1). (3.5) 

Assuming X ,  = 0 and substituting (3.5) into (3.2), we can now minimise the afunct ional  
to obtain the GL equation in the form 

6G ( X i  = 0;  P o )  
6PO 

= ( A  + 6(&Dl - 1x - nD/)Z + Bll  P i  + Bll l  P t  - d,Cld,)Po = 0 
n 

(3.6) 

where Z is the interface coefficient introduced in (2.4). The polarisation is continuous 
across the interfaces and integrating (3.6) around x n  = (hD, + nD) we get also the 
boundary condition for the derivatives 

C,(x,P,Po(x,) - C,(x,')d,Po(x,'> = -lPo(xil) (3.7) 

where x,' ( x i )  denote the points just right (left) of the interface located at x,. 
The solution of (3.6) is periodic in D and symmetric aroundx = 0 andx = 4D. These 

conditions define the solution uniquely, which can then be used to calculate the GL 
functional G x ( T )  = GX(T;  Po(x) ) .  Choosing the surface constant Z = 0 and using the 
GL parameters representing bulk BaTi03 and PbTi03 (cf appendix l ) ,  we solved the GL 
equation numerically and calculated the corresponding GL functional for D1 = Dz = 



Ferroelectric superlattices 5415 

, 0 0 2  
mult i layer 

I iK1 
A 

700. 

Figure 2. Free energy G X ( T )  of the stable (full 
curves) and unstable (broken curves) phases of 
the homogeneous system '2' and of the multilayer 
with parameters given in the appendix and D 1  = 
D2 = 40 A.  

Figure 3. Transition temperature as a function of 
layer thicknesses. 

1 28 1 4 0 ~ l x , ~ 2 1  Figure4.Polarisationprofileof aBaTi03/PbTi03 
multilayer for different temperatures and D l /  
E2(Tc,2) = 4 and Dz/E2(Tc,2) = 58. l D , + D h %  

40 A. In figure 2 we plot GX( T )  for a heterostructure as well as Gfuulk( T )  for bulk PbTi03 
as functions of temperature. One sees that the behaviour of both functionals is very 
similar, but the phase transition in the heterostructure (defined by Gx(Tc) = 0) occurs 
at a lower temperature. In figure 3 we show this transition temperature as a function of 
the layers' thicknesses. For 'thick' high-temperature layers, D2 9 g2(Tc,2), the transition 
temperature T, deviates only slightly from Tc,2, where 52(T,,2) is the correlation length, 
equation (3.8b), of the bulk material 2 at its transition temperature Tc,2 given by 

(3.8a) 

However, for 'thin' layers, D2 - E2(Tc,*), the difference can be significant, depending 
on the thickness of the low-temperature layers. 

Tc,2 = T2 + 3%/16A 1 B111,2. 

3.3. Polarisation profile 
The general solution of the GL equation (3.6) can be expressed by a combination of 
elliptic functions Ell], which is shown graphically in figure 4. In the case of 'thick' layers, 
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D, 9 E,, one can express P,(x) as well as the transition temperature by elementary 
functions. Here the correlation lengths are defined as 

(3.8b) 
where P b , ,  are the bulk polarisations in every constituent material at given temperature 
and the ‘potentials’ V,(P) are 

5 i2 = -Ld v’,(pb,cr)/d 2 P h , ~ l / c l , ,  

V,(P,) = - (U ,P$  + f B i i . , P ;  + QBiii,,P8). (3.9) 
Let us assume that the parameter I ,  which describes the surface energy, equation 

(3. loa) 
Below we will see that this condition ensures the suppression of polarisation at the 
interfaces. For ‘thick’ layers the polarisations in the centre of the layers assume almost 
their bulk values Pb.,. In the temperature region ,pat < T < Tc, where 

(2.4)’ satisfies the inequality 

I > [A2tTc,2)Cl,211’2 - [A1(Tc,2)C1.111/2. 

(3. lob) 

is the superheating temperature of the low-temperature ferroelectric [6], we can take 
Pb .1  = 0 and P b . 2  # 0. Then the solution of the GL equation (3.6) can be written as 

P,(x) O(iD1 - x ) P ~ [ ( ~ D ,  - x + cpl)/El] + O(iD2 - I X  - hD1) 
x P2[(x - to1 + 412)/‘521 O < x < + D  (3. l l a )  

where 

P l (u)  = {2A1/[B11.1 sinh2 U + (4A1B111,1/3)1’2 ~inh(2u)]}’/~ u > o  (3.11b) 
p2(u) = P h , 2  sinh(u/2)/{sinh2(u/2) + [ ( j r  - l) /(r  - I)])’’~ (3. l l c )  

r = Pi.2(T)/Pi,2(Tc.2) (3. l l d )  
and 

P h . 2  = {[-B11.2 + (B?1,2 - 4A2Blll.2)1’21/2Blll,2}1/2. (3. l l e )  

The constants cp, are determined by the boundary condition (3.7). For temperatures 
not far below Tc (T2 < T < Tc) we easily obtain from (3.7) the value of the polarisation 
at the interfaces 

(3.12) p0(D1/2)~  = P2b,2(Tc,2>A;(Tc,2 - T)/A2(Tc,2)(j - 1) 
with 

(3.13) 

This result is the generalisation of the known result for a semi-infinite ferroelectric to 
which it reducesin the limit C1, + 0 [ 121. In the temperature region considered, equation 
(3.11~)  can be simplified further and written as 

Pb.2(Tc.2) sinh(u/2) 
P2(u) = [sinh2(u/2) + (Tc,* - T2)/(TC,* - T)]1/2‘ 

(3.14a) 

It is useful to define a characteristic length 

We see that the polarisation almost vanishes for 0 < x 
V) = E 2  ln[(Tc,2 - T2)/(Tc.2 - T)1. (3.14b) 

I + to,, but it assumes the bulk 
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value for 1 + f D l  << x < $0, as exhibited clearly in figure 4. This coexistence of the two 
phases with zero and non-zero polarisation was discussed in the literature [ l l ]  for semi- 
infinite media and is a consequence of the first-order phase transition in these materials. 
In semi-infinite media I-, CQ as the temperature approaches the bulk transition point. In 
contrast, in the heterostructures this length always remains finite and depends on the 
thickness of the high-temperature layer. The point is that the above-mentioned 'kink' 
solution is stable only for temperatures below T,, the value of which depends on the 
layer thickness and is lower than Tc,2. 

3.4. Transition temperature 
Now we investigate in detail the dependence of the transition temperature on the layer 
thickness. To this end one substitutes (3.11) into (3.2) and calculates T,  from the 
condition Gx( T,) = 0. After some algebra one gets 

(3.15) (Tc.2 - 7 - C ) / ( 7 , C 3 2  - T2) = 252(Tc.2)/D2. 
It follows from equations (3.146) and (3.15) that 

l(TC)/D2 - ( E  2(Tc,2)/D*) W 2 / E  2(Tc.2))* (3.16) 

Although l(T,) is large compared with the correlation length E2(TC,J,  it is small in 
comparison with the layer thickness and thus the layer 2 is largely polarised. 

It is also of interest to consider the shift of the supercooling temperature Tcoo' of the 
heterostructure. Below this temperature the disordered phase Po = 0 is absolutely 
unstable. In this sense the supercooling temperature is similar to the transition tem- 
perature of a second-order phase transition and hence can be found by a linear stability 
analysis around P = 0 [4] .  Using the boundary condition (2.176) and assuming for 
simplicity I = 0, we obtain from the stability analysis the implicit equation for Tcool 

. (3.17) c1.1 D1 c1.2 0 2  

Eo, ( T  tanh (2g0, ( T  cool = 25 0,2  ( Tcool )  tan(S 0.2 ( Tcool)) 

Here = (Cl,n/lAnl)1/2 are the correlation lengths in the disordered phase. 
For 'thick' layers it follows from equation (3.17) that 

(3.18) 

The shift of the supercooling temperature is smaller than the shift of the transition 
temperature by a factor of order E2/D2. 

4. Dynamics 

4.1. Equation of motion 
In this section we consider the dynamics of the order parameter P .  We refrain from a 
discussion of the acoustic excitations in superlattices, which have already been studied 
extensively [ 131. The dynamic phenomena in ferroelectrics in general are described by a 
coupled system of equations of motion for the polarisationP(x, t ) ,  the strain components 
ei(x, t )  and the entropy density s(x, t) .  However in the low-energy, long-wavelength limit 
this system of equations can be reduced to a single equation for P ( x ,  t). The reason for 
this is as follows. 
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The characteristic timescale of the soft mode U;' is much shorter than the charac- 
teristic time for acoustic wave propagation w ; l ( - k - ] )  and the heat propagation time 
oh1 ( -k -2) .  For small wavenumber k these characteristic times obey the inequality 

00' e 0,' e 0;'. (4.1) 

Therefore, in this limit one can assume that the soft mode propagates adiabatically at 
fixed strain, i.e. at the equilibrium value 

Hence the phenomenological equation that describes the soft-mode propagation 
reads [lo] 

of strain. 

m(df + y8 , )Pi  = -6H/6Pi.  (4.2) 

Here the adiabatic potential H = H(s ,  X i ;  P ,  ei,o) is related to the previously defined 
potential G(T,  Xi; P ,  ei) via the Legendre transform 

H(s ,  Xi; P ,  = G(T,  X i ;  P ,  ei ,o)  + s (x)T(x)  d3x  1 
where 

S(X) = -6G/6T(x) 

(4.3) 

(4.4) 

is the entropy density. In equation (4.2) m ( x )  is aphenomenological mass parameter with 
dimension [s2], while y (x )  is a material-dependent damping constant. The depolarisation 
field E"', which appears in the functional G and in H ,  correspondingly obeys the quasi- 
static Maxwell equations (2.2). Equations (4.2) and (2.2) constitute the basic equations 
of motion for the long-wavelength dynamics of ferroelectric multilayers. 

4.2.  Harmonic approximation 
In order to solve (4.2) in harmonic approximation we linearise around the equilibrium 
value Po 

P ( x ,  t )  = Po(x)  + 6P(x ,  t) .  

m(df + rd,)6P = -L6P + 6E"' 

(4.5) 

Then the equation of motion for 6 P ( x ,  t )  reads 

(4.6) 

where the depolarisation field 6E"' obeys 

V x 6E" = 0 

V(&,SE"' + 4n6P) = 0 

(4.7a) 

(4.76) 

and the linear differential operator L is given by 

1/xpo- VCl v -  a zc*a 1. d,(-c2+c3)dy dx(-c21-c3)a z 

I/x ";'%eo - V C  1 V - 8 c 2 a a y  ( - c 2 + c 3 )  8 I 

a z ( - C 2 f C 3 ) 8 y  

(4.8) 

Here and in the following we assume for simplicity that the surface terms vanish, i.e. 
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I = J = 0, equation (2.4). In equation (4.8) ~y~,'fl(x) andXid.'fl(x) represent the space- 
dependent transverse and longitudinal local susceptibilities at fixed value of the strain 
e,,o, i.e. 

1/XY-'[)=A+(Bl2 + q ~ 4 / ~ 4 4 ) P ~ + B 1 1 2 P :  (4.9a) 

l/~;"" = A + 3BilPi  + 5BlllP:. (4.96) 

Here we introduced 

Bl l  = B i i  + (6?? - 611) f 4[-4qiiqnCi2 + 2q:2Cii + q?i(Cll C12)] 

x [ ~ ( C I I  - c d c 1 1  + 2c12)1-' (4.9c) 

and 

Blll = Blll + (6% - 6111). (4.9d) 

The adiabatic acoefficients 6:; and b?fl appear in (4.9) due to the transformation from 
the isothermal potential G to the adiabatic potential H ,  and their explicit form can be 
found in appendix 3. 

Because of the translational symmetry parallel to the layers we may write 6 P  as 

6 P ( x ,  t )  = exp[i(kll * x - wt) ]p (x )  (4. loa) 

and 

6E"(x, t )  = -Vq"(x,  t )  (4. 106) 

where kil = (0, ky, kz). Because of the Maxwell equation ( 4 . 7 ~ )  6E" could be expressed 
as the gradient of a scalar potential q m  in (4. lob). Since the heterostructure is periodic 
in the x direction, p ( x )  and q ( x )  satisfy the Bloch condition 

p ( x  + D) = exp(ik,D)p(x) and q ( x  + 0)  = exp(ik,D)q(x) (4.11) 

where k, is the Bloch wavenumber. 

with QF"x, t )  = q ( x )  exp[i(kll - x - ut)] 

To conclude this section we want to discuss briefly two more points: 

(i) We have used the quasi-static Maxwell equations to describe the long-range 
dipolar interaction. In principle, one would have to evaluate the depolarisation field 
6E" from the complete set of Maxwell equations. However, the use of the quasi-static 
equations-and hence the decoupling of the optical modes from photon dynamics-is 
justified, whenever the photon frequency = ck/n (with the index of refraction n) is 
large compared with the soft-mode frequency w o  

w o  4 ck/n. (4.12) 

This approximation, of course, is not valid for k+ 0 and this explains the seemingly 
unphysical result that the soft-mode frequencies have no unique limit for k+  0 (cf 
section 4.4). 

(ii) Finally we turn to the influence of free carriers on the optical spectrum. The 
longitudinal optical (LO) modes give rise to the macroscopic electric field 6E" and, as a 
result, their frequencies are higher than the frequencies of the transverse optical (TO) 
modes for k+ 0. Free carriers in the ferroelectrics can screen this field, reducing the 
gap between the LO and TO modes [14]. In the following we assume that the multilayer 
constituents are pure insulators and neglect the influence of free carriers. 
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4.3. Propagation of transverse optical modes 

First we want to study the spectrum of those solutions of equation (4.6) which are 
purely transverse, V 6 P  = 0, and hence produce no macroscopic depolarisation field. If 
V 6 P  # 0, the long-range dipolar interaction becomes important and its influence on 
the spectrum will be discussed in the next section. We also assume y = 0, postponing 
the discussion of damping to section 5 .  For arbitrary direction of the in-plane wavevector 
kli equation (4.6) consists of four coupled equations for the three components of the 
polarisationpi(x), i = x , y ,  z ,  and the potential cp(x). In general, these modes are neither 
purely transverse nor purely longitudinal. In order to discuss the physics of the transverse 
modes, we put kil = (0, 0,O) for simplicity. Thenp, andp, are purely transverse and the 
equation for pz reads 

(4.13) mw2pz(x) = (l /Xfd, '( l  - a,c,a,)p,(x) 

while p, (x)  obeys the same equation provided ~ f ~ + "  is replaced by ~ i ~ , ~ o .  
Before solving this equation, we want to discuss the boundary conditions, which the 

polarisation has to obey at the interfaces. The GL coefficients as well as the spontaneous 
polarisation Po@) entering into (4.13) are space-dependent quantities. If the GL coef- 
ficients and their derivatives are continuous functions, then p,(x) and its derivative are 
continuous throughout the whole sample and we do not have to face the question of 
boundary conditions. However, we approximate the GL coefficients by step functions as 
was explained in section 2. We now derive for this form of GL coefficients the boundary 
conditions that connect p z  and its derivative across the interfaces at x = D1/21+ = 
D1/2 + A and x = D1/21- = D1/2 - A .  Because of the inequality A / & <  1 (cf section 
2) we may assume that p z  itself is continuous across the interfaces. The condition on 
d g z  can be found by integrating (4.13) across the interface Jg$/: , . , dx 

[-cl~,P,l:t~il. - ObZQA) .  (4.14a) 

For small transition regions A of the GL parameters the right-hand side of (4.14a) may 
be neglected and one thus obtains the desired boundary conditions 

[P,If$/' = 0 and [-cla,P,l::jil_. = 0. (4.14b) 

We note that the conditions (4.14b) also assure the continuity of the energy current 

j E , ,  = (dh/d(a,pz))a,6pZ (4.15) 

density jE,,, 

across the interfaces. Herein the potential density h is defined through H = J h d 3x. 
Equation (4.13) is similar to-but not identical with-a Schrodinger equation for 

a particle with space-dependent mass. The temperature, which enters via the local 
susceptibility ~ i ~ s ' n (  T ,  x ) ,  appears as a parameter in the 'Hamiltonian'. Figure 5 shows 
the soft-mode spectrum resulting from equation (4.14) as a function of temperature 
and Bloch wavenumber k,. The spectrum has gaps at wavenumbers k ,  = nn/D, as is 
expected for a periodic structure. It is also clear that the eigenfrequencies change 
discontinuously at the transition temperature T,, because the system undergoes a phase 
transition of first order. Further we note that the bands are flat for low energies and only 
the high energy levels show strong dispersion. 

In order to understand the bandwidths we first indicate how the dispersion relation 
and its gaps are computed. Adopting the general treatment of [ 151 we determine even 
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Figure 5. Soft-mode dispersion relation of the 
p t  component, equation (4.13), as a function of 
wavevector k = ( k L ,  0,O) and temperature. Par- 
ameters as in figure 2. 

and odd one-cell solutionsg(o, x) and u(w, x) of (4.13). In terms of these the dispersion 
relation follows from 

(4.16) 

with the Wronskian W =cl.Ig(w, O)d,u(o, 0). 
Let us first consider the paraelectric temperature region T > T,, where P&) = 0. 

Then the potential term l / ~ i ~ , ‘ ~ ( x )  has a step form and the solutions of (4.13) are 
elementary. Using the boundary conditions derived above one finds 

cos(k,D) = 1 + 2u(w, D/2)dxg(w, D/2)C2/W 

D 
2 

foro s x s 2 

g(w,  x) = 1 cos Y+) cos [ p *  ( x  - $11 (4.17) 

where 

(4.18) 

and the bulk soft-mode frequencies o ~ ~ . ~  are defined by 

O T 0 . n  = (1/mnxi,d&e0)”2. (4.19) 

The odd solutions are found by replacing cos@ +), cos(plD/2) and sin(p 1D 1/2) in (4.17) 
by sin(p *x), sin(p ,D 1/2) and - cos(p 1D 1/2), respectively. These expressions are also 
valid for purely imaginary pn with a corresponding change of cos(p&) into cosh(p&), 
etc. The excitations can propagate in a particular layer a as long as p’, > 0. Otherwise 
they decay exponentially within the length l/Ipnl in this layer. Therefore, the form of 
the mode depends crucially on the signs of p’, , i.e. on the relation between the frequencies 
o, w ~ ~ , ~  and WTO.2.  In figure 6 we have plotted the temperature dependence of the 
bulk frequencies w T O , ~ ( T ) .  One sees that for the parameters chosen we have 
o T O , ~ ( T )  < w T O , ~ ( T )  in the paraelectric temperature region T > Tc.2 = T,. Therefore 
at temperatures T > T, and energies in the region 030.2 < o < o ~ ~ , ~  the modes are 
localised in the layers 2 and decay exponentially into the layers 1. Consequently the 
bands are flat and their width depends on the overlap of the wavefunctions and behaves 
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Figure 6. Temperature dependence of the bulk 
soft-mode frequencies ~ ~ ~ ~ . ~ ( k  = 0). cy = 1 . 2 ,  
equation (4.19). 

as exp( -lpll D l )  in this frequency region 

Figure 7. The six lowest eigenfrequencies (full 
curves) of the interface bound states of equation 
(4.13) for k ,  = k,, = 0 as a function of the scaled 
temperature within the temperature intervals 
( Tc.2 - 4.8 K) T 6 Tc.2. The broken curves 
represent the two bulk soft-mode frequencies. 
D115dTc.2) = D2/4*(Tc.2)-+=. 

Only for high frequencies w > 0TO.2  does the . .  

soft mode propagate through both layers giving rise to a finite bandwidth, as can be seen 
from figure 5 .  

Below the transition temperature T, the polarisation profile P,(x)  has a complex 
form and in general it is not possible to derive simple analytical expressions for the one- 
cell solutions g and U .  Then the dispersion relation has to be calculated numerically. 
However, to get a qualitative understanding of the spectrum, let us approximate P,(x)  
by the step function 

?c 

(4.20) 

which means that the polarisation assumes its bulk value Pb.2 in the layers 2 and vanishes 
in the layers 1. Then the functions g and U are given again by the expressions (4.16) and 
(4.17). As can be seen from figure 6, wT0.1  < w ~ ~ . ~  holds in the temperature region 
T < 722 K < T, for the chosen parameters. Therefore the modes at these temperatures, 
whose energies lie in the interval w ~ ~ , ~  < w < mT0,2,  are confined to the layers 1. We 
see that, depending upon the temperature, the modes are confined either to the layers 
1 or 2. Within the approximation (4.20) this change of mode type happens at the 
temperature T = 722 K. In section 5 ,  we will show how this temperature dependence of 
the modes is reflected in the lineshape of the dynamic correlation function. 

Actually the true polarisation profile (cf figure 3) gives rise to a space dependence of 
the ‘potential energy’ l/~W~,‘o(x) in equation (4.13) that deviates from the simple step 
form at the interfaces. We now want to study how the inhomogeneity of the polarisation 
at the interfaces derived in section 3.3 influences the spectrum and the form of the 
modes. To this end the true polarisation profile has been inserted into (4.13), which has 
been solved numerically for the case of infinitely thick layers D1 = D2 = m, representing 
the special case of two adjacent semi-infinite materials 1 and 2, and for temperatures in 
the region T2 e T s T,. The lowest modes are shown in figure 7. There exist modes with 



Ferroelectric superlattices 5423 

2) 

Figure 8. Potential energy l/ad % ( x )  for several 

figure. Parameters as in figure 7.  
6 B lbx'S~bz' values of the temperature as indicated in the 

O - i  
0,112<21 

frequencies o < min(wTo,l, w ~ ~ , ~ )  below the 'continuum'. To understand the nature of 
these modes, let us consider the potential term l /~ l~* 'n(x)  in the 'Schrodinger equation' 
(4.13), which is plotted in figure 8 for several values of temperature. We see that 
there are potential wells within the layers 2 located at the interfaces. The modes with 
o < min(wTo,,, w ~ ~ , ~ )  can be understood as interface modes; i.e. bound states of these 
potential wells. Concerning the form of the potential wells, the following conclusions 
can be drawn from the analytical form of P,(x) ,  as discussed in section 3: 

(i) The width of the well is proportional to the length, 1, equation (3.14b), and hence 
diverges logarithmically with Tc.2 - T. 

(ii) The bottom of the well is approximately given by 1/~1".'O(D~/2/ +) = A2(Tc,2). 
(iii) The well is confined to the left at x = D1/2 by a barrier of height 

and to the right at x - D1/2  + 1 by a barrier of height 

1/~1~"0(0/2) = l / ~ f , $ ~ o ( T  = Tc,2). 

In figure 7 we have plotted the lowest-lying eigenfrequencies on, n = 1, 2, . . . , of 
this potential instead of the temperature as a function of the temperature-dependent 
length I( T).  In the case of large well widths 1( T) B c2 the temperature dependence of 
the eigenvalues o;( T) can be understood in analogy with the energy levels of a square- 
well potential, for which one has 

It should be noted, however, that I (  T )  always has a finite upper bound, given by its value 
at the transition temperature I( Tc) ,  equation (3.16). Consequently the limiting case 
I(T) B c2 can only be realised for large layer thicknesses D2,  i.e. ln(D2/e2) B 1. Of 
course the expression (4.21) is only valid for energies within the potential well, i.e. 

< min(@TO,l, oT0,2)* 
Concerning these interface modes we further note the following: 
(i) The number N of bound states increases with decreasing temperature difference 

T, - T, as follow directly from equations (4.21). 
(ii) In the limit D, B 5, the frequencies of these interface modes are independent of 

the layer thicknesses D,. Furthermore, they are twofold degenerate, because each unit 
cell contains two interfaces. 
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4.4. Znpuence of the dipolar interaction on the spectrum 
In this section we study the influence of the long-range dipolar interaction on the phonon 
spectrum. Contact will also be made to previous theories [16-191, which take into 
account only the dipolar interaction and neglect the short-range elastic forces. We 
restrict ourselves to temperatures in the paraelectric phase T > T,, and choose kil = 
(0 ,  ky,  0). From equation (4.6) we then deduce three coupled equations for the com- 
ponents p,, p y  and cp , which read 

( 4 . 2 2 ~ )  

and 

( a x a x  - kpx)cp(X) = 4n[a,Px(x) + ikllPy(x>l. (4.22b) 

The solutions of (4.22) in general give rise to a macroscopic depolarisation field 6E" = 

As in the preceding section we obtain from these equations effective boundary 

( 4 . 2 3 ~ )  

(-a*, - q ,  O b .  

conditions for p,, p,,,  cp and their derivatives at the interfaces, which now read 

[-(cl + C , ) a , P ,  + i(c3 - C2)k/IPylE$22(! = 0 

(4.23b) 

[ E d , c p  + 4naXp,]g$lr = 0 and [cp]g$:l: = 0. ( 4 . 2 3 ~ )  

Equation ( 4 . 2 3 ~ )  just expresses the continuity of the normal component of the dis- 
placement field 6 0  = &,SEm + 4n6P and the continuity of the tangential component of 
6E". 

The numerically calculated spectrum of equation (4.22) in the limit of very small 
wavenumbers k l D / n  < 1 and kllD/n 4 1 is represented in figure 9 by the full curves. 
The parallel wavevector is fixed kil= O.Oln/D. From figure 9(a) the limits k,/kli + 0 and 
kll/ki + 0 can be read off from the branches to the left and to the right of kli. Modes the 
frequency of which are analytically in k are completely flat. We see that for some 
branches of the soft-mode frequencies the limiting value k + 0 is not unique but depends 
upon the propagation direction k/lkl, i.e. on the ratio between kii and k, .  For smaller 
values of the stiffness constants ci, this directional dependence in the limit k+  0 would 
be even more pronounced, as is demonstrated in figure 9 ( b ) ,  where the replacement 
c, --$ c,/10 is made. 

In order to understand this behaviour, let us consider the dipolar limit of the dis- 
ordered phase, i.e. put cI(x) = c&) = c&) = 0. Then equation (4.6) defines a fre- 
quency- and x-dependent dielectric tensor E ( X ,  w )  = ~ ( x ,  w )  1 and together with 
Maxwell's equation (4.7) one derives the relation 
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Figure 9. (a) Soft-mode frequencies as a function of k,D/n for kl,D/n = 0.01 and D, = D, = 
20 A. The full curves are the solutions of equation (4.22); the chain curves are the solutions 
for the pure dipolar case. ( b )  Soft-mode frequencies as in (a)  but with reduced stiffness 
coefficients cl,#-+ cl,,/10 and c * . ~ +  c ~ . ~ / ~ O .  

[a,& w>a, - +(X, w)lP,(x) = 0 (4.24) 

for the electrostatic potential. Within each layer the dielectric function assumes the 
uniform values 

&,(U) = Er,, (U' - ">.e) ( Y =  1,2.  
- WTO.n 

(4.25) 

Equation (4.24) describes long-wavelength phonons in any dielectric heterostruc- 
ture, such as for example in the semiconducting GaAs/AlAs superlattices [16]. The 
solutions of (4.24) are known [16-191, e.g. one finds for the dispersion relation the 
implicit expression 

COS(~,D)  - cosh(kllD1) cosh(k D 1 E ~ ( w )  + E ~ ( u )  
sinh(kliD,) sinh(kilD2) ' I  2 ) = - ( -  2 & 2 ( W )  ",. (4.26) 

Equation (4.26) gives rise to four frequency branches, which are exhibited in figure 9 by 
the chain curves. The comparison of full and chain curves reveals that the directional 
dispersion of the phonon frequencies is a dipolar effect. 

In the limit of thick layers, kl$l,%- 1, (Y = 1,2 ,  the solutions of (4.24) take the form 
~ 7 1  

~ ( x )  = exp(-kll(x - 0,/21) + exp(ik,l>)exp(-k,lIx + D,/21) 
(4.27) 

These are the so-called Fuchs-Kliever interface modes [20]. It is notable that these 
Fuchs-Kliever modes result from the dipolar interaction, while the second type of 
interface modes, discussed in section 4.3, had its origin in the special form of the 
inhomogeneous polarisation in a system with a phase transition of first order. 

To conclude the discussion of the phonon dynamics in the ferroelectric hetero- 
structure, it is worth comparing it with the dipolar magnon dynamics in the ferromagnetic 
heterostructure [4]. The phonon problem may be mapped onto the magnon problem by 
substituting P o - )  MO, 6E"- 6H" and E -  ,U, where ,U is the Polder tensor. However, 
there are characteristic differences resulting from the different nature of the polarisation 

for 1x1 s 0 /2 .  
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and magnetisation vectors. The magnetisation M O  is an axial, the polarisation Po a polar 
vector. 

(i) As a result the phonon equation of motion (4.6) is invariant under the reflection 
a, because of u,Po = Po. This is not true for the magnetic case, where a,Mo = -MO.  
Consequently, the electrostatic potential has definite parity for Bloch wavenumbers at 
the zone boundary k ,  = nn/D [ 151, while the magnetostatic potential is asymmetric and 
is localised around only one of the two interfaces in the unit cell. 

(ii) The vectors (Po,  kll) transform under time reversal T into (Po,  - I $ ) .  Therefore 
the same electrostatic potential q ( x )  appears for kii as well as for -kli. On the other hand, 
because of TMo = -MO, this does not hold for a magnetic system. Here the form of the 
modes depends upon sgn( k,).  This different behaviour under time reversal is clearly 
seen in inelastic light scattering on semi-infinite media. While in a scattering experiment 
on a dielectric structure one sees the Stokes and anti-Stokes lines, one of these lines is 
forbidden in the magnetic system. 

5. Dynamic correlation functions 

In this section we evaluate the dynamic correlation function C,(x, x, o) 

C,(x, x, w )  = (GP;(x ,  W ) G P j ( X ,  -0)) (5.1) 
where 

SPi (x ,  w )  = GPi(x ,  t)  exp(iwt) d t  (5 .2)  I 
which may be probed by inelastic light and neutron scattering experiments. 

be written in the form 
Owing to the translational invariance in the film planes the correlation function can 

withx = ( x ,  xli) and q = (4 ,  411). The classical fluctuation-dissipation theorem relates the 
correlation functions C,(x, x ’ ,  411, w )  to the linear response functions G,(x, x ’ ,  411, U )  

through 

(5.4) 
k B  T 

C;j(x,x’,ql1>w) = i w [ G i j ( x , x ’ , q l i , w )  - G~(xr ,x ,q11 ,~ )1*  

The latter describes the response of the polarisation GP(x, 411, w )  to a weak external 
electric field G E e x t ( x ,  411, U )  

and can be calculated from the equation of motion (4.6). 
For simplicity we will consider in the following only the case 411 = 0 and will omit the 

argument qI1 in the ensuing expressions. Then the system (4.6) is invariant under the 
reflection R = a, and the rotation R = Czx so that the response matrix is diagonal, G, = 
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6,Gji. Furthermore, from the symmetry of the equations of motion under time reversal 
[21] it follows that 

G j j ( ~ ,  x’, W )  = Gji(x, x’, w) .  (5.6) 
With (5.6) we may rewrite the fluctuation-dissipation theorem (5.49 for the diagonal 
component in the form 

2kB T 
C i i ( X , X ‘ ,  o) = -41(Gii(x,x’, o)) i = x, y ,  z .  

o (5.7) 

Let us consider the zz component of the response function. From (4.6) one deduces 

(5 .  Sa) [ -m(02 + iyo)  + g(x)]G,,(x, x’, w )  = 6(x - x’) 
with the linear operator 

g ( x )  = l / x p ( l  - a,c,a,. (5.8b) 

The solution of ( 5 . 8 ~ )  is well known [22] and may be expressed by the eigenfunctions 

( 5 . 9 ~ )  

pn(x, k,, w )  and eigenvalues En(k,, o) of the eigenvalue problem 

[-mci(k,, w )  - imyo + g ( x ) ] p , ( x ,  k,, o) = 0. 
Here thep,(x, k,, o) satisfy the Bloch condition 

Pn(X + D, k, ,  0) = exp(ik,D)pn(x, k,, 0). 
Then the response function may be written as 

(5.9b) 

(5.10) 

where k, assumes the discrete values k, = 2nm/L, m E Z, and the scalar product is 
defined as 

(5.11) 

In scattering experiments one measures the Fourier transform of the correlation 
functions 

Cz:(q,, U )  = j-1 C Z Z ( X , X ’ ,  0) exp[- iq,(x - x’)] dx dx’ (5.12) 

which we have evaluated numerically. Its energy and temperature dependence is repre- 
sented in figure 10. Here we have approximated the space dependence of the damping 
constant by a step function 

y(x) = 2 E y n @ W f f  - Ix - [n + I(a - 1)IDl). (5.13) 
n =  - m  a= 1 ,2  

For the constants yn we have chosen the temperature-independent values 

= 0.1 Y2 = 1  and Y1 

fi oT0.PbT~03(Tc.2) a WTO.PbTiO,( Tc ,2 )  

(5.14) 

which accounts for the fact that the damping is stronger in BaTiO, than in PbTi0, [23]. 
In figure 10 the correlation function is plotted as a function of T and o with values of T 
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Figure 10. Correlation function C,,(q,, w )  (times 
02) in arbitrary units as a function of w and tem- 
perature. 911 = 0, ql = n / ( 2 D ) .  The inset displays 
the same figure from above. 

and w within a certain interval. One clearly recognises in the peaks of the correlation 
function the band structure shown in figure 5 ,  i.e. the peaks are situated at frequencies 
w = ~ : ( k , ) ,  where EO,(k,) is the nth eigenvalue of equation (4.13), corresponding to a 
solution with Bloch wavenumber k , .  A prominent feature is that the linewidth of the 
lowest resonance at w = ~ y ( k , )  is small for temperatures above and broad below, 
where T is marked in figure 10. We want to show that this can be attributed to the 
temperature dependence of the shape of the modes, which was discussed in section 4.3. 
Let us for simplicity assume small damping constants y 4 wT0. For y = 0 equation (5.9) 
reduces to equation (4.13). It has the solutions p : ( x ,  k , )  = p:* ( x ,  - k , )  with the real 
eigenvalues EO,(kl). For small y ,  equation (5.9) may be solved perturbatively and one 
finds approximately 

(5 .15~)  &2,(kl> = EO,(k,)[E:(kJ - irn(k,>l 

with the effective damping constant 

(5.15b) 

Expandingp:(x, k , )  in the form 

P : k ,  k , )  = exp(ik,x) P n ( Y ,  k , )  exp(2Jci.4) (5.16) 

we may rewrite the correlation function C,,, equation (5 .12) ,  for frequencies CO close to 
E: as 

v = O . * l .  . . .  

with k ,  = q,  mod(2n/D) and v o  = D(q,  - k , ) / 2 n .  The effective damping constant 
represents the halfwidth of the resonance at energy EO,(k,). However, in section 4.3 it 
was shown that at high temperatures the low-energy modes p :  are localised in the layers 
2 .  Hence in this temperature region r n ( k , )  is small for our choice of the parameter y2 
(weak damping in PbTi03). At low temperatures the low-energy modes are localised 
within layers 1 and y n ( k l )  becomes large due to the value of y1 (strong damping in 
BaTiO,). The change of the type of the mode py(x ,  k , )  occurs at the temperature F,  
marked in figure 10. 
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6. Summary 

Sections 2 and 3 were devoted to the static properties of a ferroelectric heterostructure, 
undergoing a phase transition of first order. We explicitly took into account surface 
interactions and studied the influence of order-depressing surface parameters. From the 
general GL potential for polarisation and strain tensor we passed over to an effective 
potential for the polarisation, whose stationary states were determined. The GL equation 
was solved numerically. In the limit of large layer thicknesses, analytical results were 
presented for the following quantities: 

(i) Polarisation profile. In the immediate vicinity below T, unpolarised domains 
emerge from the weaker ferroelectric layers 1 into the stronger ferroelectric layers 2. 
The size of these domains increases logarithmically with the temperature difference 
Tc.2 - T. This effect is due to the phase coexistence of the ordered ( P  = Pb.2) with the 
disordered ( P  = 0) phase in the bulk material 2 at its phase transition temperature T = 

(ii) Transition temperatures. The phase transition temperature T, of the hetero- 
structure behavesfor large thicknesses D2asymptotica1lyas Tc,2 - T, - 0;'. The super- 
cooling temperature Tcooi follows a T2 - TCooi - DT2 law, where T2 is the supercooling 
temperature of the bulk material 2. By looking at various limiting cases contact could 
be made with known results for films or semi-infinite media. 

In section 4 we studied the dynamics of the soft mode, which is connected with the 
ferroelectricphase transition. First we evaluated the soft-mode dispersion in the absence 
of any long-range dipolar interaction. The lowest bands are almost dispersion-free and 
the corresponding modes are standing waves. These waves are localised in the layer 
constituents with the lower bulk soft-mode frequency. This mode confinement is also 
known for dielectric heterostructures [24]. A novelty, however, is the temperature 
dependence of the mode form and of the spectrum. Because the bulk soft-mode fre- 
quencies of the two layer constituents soften at different temperatures, the localisation 
of the modes in one or the other layer depends upon the temperature. 

Furthermore, interface modes were found, which appear for temperatures close 
below T, in sufficiently 'thick' layers De% 5,. They are a consequence of the special 
form of the inhomogeneous polarisation profile in a superlattice with a phase transition 
of first order. The number of these bound states increases with decreasing temperature 
difference Tc,2 - T. These modes are twofold degenerate. 

Finally we investigated the dispersion of the modes accompanied by a macroscopic 
electric field. Some of these modes show a directional dispersion fork+ 0, i.e. the soft- 
mode frequency still depends on k/k in this limit. The comparison with the dipolar limit, 
where simple analytic expressions are known, reveals the dipolar origin of the directional 
dispersion. The differences between magnons in a ferromagnetic and phonons in the 
ferroelectric superlattice were discussed. These result from the fact that the mag- 
netisation is represented by an axial and the polarisation by a polar vector. 

In section 5 we studied the polarisation correlation function, which may be probed 
in light or neutron scattering experiments. The temperature dependence of the mode 
form can be seen in the lineshape, if the damping constants of the two layer constituents 
differ from each other, as is the case for BaTiO, and PbTi03. Then the linewidth of the 
correlation function depends upon in which sublattice the modes are localised and hence 
upon the temperature. 

Tc.2. 
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Appendix 1. Parameters 

In the numerical calculations we used the following set of parameters, representing 
approximately bulk BaTi03 (subscript 1) and PbTi03 (subscript 2) [25-281: 

A [ = 0.028/T1, A i  = 0.064/T2, T1 = 381 K, T2 = 749 K, C1.l = 0.32 A2, Cl,z = 0.89 

lO-"[T(K) - 4361 cm3 erg-', B11,2 = -4.56 X cm3 
erg-', B12,2 = 2.70 x 10-"cm3 erg-', B,,,,, = 9 x 
cm6 erg-2, Bl12,' = 1.23 x cm6 erg-2, cll,l = 1.9 x 
10l2 erg ~ m - ~ ,  c11,2 = 1.8 x 10l2 erg ~ m - ~ ,  c12,1 = 9.7 X 10'' erg ~ m - ~ ,  c12.2 = 7.5 x 10l1 
e r g ~ m - ~ , q ~ ~ , ~  = 1.3,q11,2 = 0.7, q12.1 = -0.4,q12.2 = -0.3, C ~ . ~ , ~ ( T & )  = 24 X 106erg 
cm-3 K-', c ~ , ~ , ~ ( T ~ ~ )  = 6 x lo7 erg cm-3 K-', E ~ , ~  = 76, 
sz and m2 = 2.9 X 

assumed to vanish, i.e. F,,, = I = J = 0. 

A', C2<1 = 1.85 A', C2.2 = 5.12 A2, C3<1 = 3.26 A2, C3.2 = 9.02A2, B11,1 = 2.32 x 
cm3 erg-', Blz.l = 7.96 x 

~ m ~ e r g - ~ ,  B111,2 = 2.85 x 
cm6 erg-2, B112,2 = 1.65 x 

= 123, m l  = 0.9 x 
s2. 

Furthermore the flexoelectric coefficients as well as the surface coefficients were 

Appendix 2. Ginzburg-Landau coefficients of the effective potential 

The GL coefficients A ,  B,, s,, and Q ,  of the effective potential GX, equation (3.2), are 
connected with the original coefficients a, b,, c,, and q,, of the potential G, equation 
(2.1), by well known relations [6]: 

(A2. la) 

Blll = blll B11z = b112 B123 = b123 (A2.lb) 

B11 = b11 + 2[-qL(cll + ~ 1 2 )  + 4q11q12~12 - 2qLcllI/det (A2.1~) 

B12 = b12 + 2[dIC12 - 2q11q12c11 + 4?2(2c12 - c11)l/det - 4:4/c44 (A2. Id) 
SI1 = (c11 + c12)/det sI2 = -c12/det s 4 4  = U C 4 4  (A2. le) 

A = a  A' = a' 

Q i i  = [qii(cii + C I Z )  - 2qizcizI/det (A2. If 1 
Q I Z  = (-411~12 + qi2~11)/det Q44 = 444/~44 (A2. I d  
with 

det = (c11 - C 1 2 ) ( C l l  + 2c12). 
Owing to the flexoelectric coefficients we get further that 

c1 = c1 -E4/c44 (A2.3~) 

c2 = cz - V?l<C11 + c12) + 2fi2Cll - 4f11f12c12l/det + f i 4 / C 4 4  (A2.3b) 

c3 = c3 - cfll - - f 1 d 2 / ( C l l  - c12) (A2.3~) 

Fll = Ifll(Cl1 + c1z) - 2ff,zc1zl/det (A2.3d) 

F12 = c f l Z C 1 1  - f11c12)/det (A2.3e) 

(A2.2) 

F 4 4  = f 44 /c44. 
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Appendix 3. Adiabatic Ginzburg-Landau coefficients 

The transition from the isothermal potential G to the adiabatic potential H ,  equation 
(4.3), leads to a transformation of the GL coefficients 6, + b$d, . . . . Assuming a linear 
temperature dependence of the coefficients a and bI1 we get [29] 

(A3. la) 

(A3.16) 

Here is the specific heat in the unpolarised phase. All other GL coefficients remain 
unchanged. 

Note that we have omitted the thermal expansion term - -a( T - To) ( e l  + e2 + e3)  
in the expression for the elastic energy G2,  equation (2.36). The expansion coefficient 
a also gives rise to corrections in the adiabatic coefficients. These corrections are small, 
however, and may be neglected. 

67: - 611 = T(da/dT)’/(3cv.o) 

6% - 6111 = 2T(da/dT)(d61,/dT)/(5cv.o). 
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